Ergodic Theorems
نویسنده
چکیده
Every one of the important strong limit theorems that we have seen thus far – the strong law of large numbers, the martingale convergence theorem, and the ergodic theorem – has relied in a crucial way on a maximal inequality. This is no accident: it can in fact be shown that a maximal inequality is a necessary condition for an almost everywhere convergence theorem. We will refrain from carrying out this program, since it is tangential to our main interests. Instead, in the sections below we will develop a systematic method for using maximal inequalities to deduce almost everywhere convergence theorems. Our primary focus will be on ergodic theorems; however, since the ergodic theorem is in certain ways linked to differentiation theory, we will begin by proving Lebesgue’s differentiation theorem. The strategy is simple to describe, if not always to implement. First, find a dense subspace of L1 for which the convergence theorem is easily established. Second, prove a maximal inequality (technically, a weak type-(1,1) inequality). Finally, use the maximal inequality and an approximation argument to deduce the convergence theorem for all of L1.
منابع مشابه
Non-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملSOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS
This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...
متن کاملErgodic Theorems and Approximation Theorems with Rates
A-ergodic nets and A-regularized approximation processes of operators are introduced and their convergence theorems are discussed. There are strong convergence theorems, uniform convergence theorems, theorems on optimal convergence, and theorems on non-optimal convergence and its sharpness. The general results provide unified approaches to investigation of convergence rates of ergodic limits an...
متن کاملUniform Ergodic Theorems for Dynamical Systems Under VC Entropy Conditions
The classic limit theorems of Vapnik and Chervonenkis [27,28] show that if a function class F satisfies a random entropy condition, then the strong law of large numbers holds uniformly over F . In this paper we show that an analogous weighted entropy condition implies that Birkhoff’s pointwise ergodic theorem holds uniformly over F . In this way we obtain a variety of uniform ergodic theorems f...
متن کاملThe ergodic theorems of demography: a simple proof.
Standard proofs of the ergodic theorems of demography rely on theorems borrowed from positive matrix theory, tauberian theory, and the theory of time-inhomogeneous Markov matrices. These proofs are efficient and expedient, but they give little direct insight into the mechanism that causes ergodicity. This paper proposes a simple and unified proof of the two ergodic theorems. It is shown that th...
متن کاملUniform Ergodic Theorems on Subshifts over a Finite Alphabet
Abstract. We investigate uniform ergodic type theorems for additive and subadditive functions on a subshift over a finite alphabet. We show that every strictly ergodic subshift admits a uniform ergodic theorem for Banach-spacevalued additive functions. We then give a necessary and sufficient condition on a minimal subshift to allow for a uniform subadditive ergodic theorem. This provides in par...
متن کامل